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Abstract. A formula is presented giving a rigorous lower bound to the true quantum- 
mechanical expectation value <$1FI$> of a positive operator F > 0 in terms of some 
approximate wave function 4. This bound is compared with previous results of 
Bazley and Fox and of Jennings and Wilson as well as with a much more general 
lower-bound expression which is often applicable even when matrix elements of F 2  
do not exist. I t  is shown that the non-linearities of the lower-bound expressions 
can be exploited by choosing ‘symmetric sum’ operators to optimize the lower bound. 
As an illustrative application lower bounds are calculated for various powers of the 
nuclear-electronic and interelectronic distances r l ,  r I 2  in the normal helium atom 
using a simple screened hydrogenic approximation. 

1. Introduction 
The calculation of quantum-mechanical properties is dominated by energy considera- 

tions and the search for approximate eigenvalues of the many-particle Schrodinger equation. 
It is possible to compute both upper and lower bounds to the true energy levels, and in 
particular the quality of the (variational) energy upper bound has often been used to 
determine approximate wave functions for the description of a system. 

Because the energy criterion may neglect certain details of the wave function which 
are important for other properties, the fundamental importance of attaching error bounds 
to the calculated values of other quantum-mechanical properties has been recently stressed 
(e.g. Lowdin 1960, Jennings and Wilson 1967). In  the present paper a formula is presented 
for a guaranteed lower bound to the true value (+IFI+) of a given positive operator F. 
This bound is first compared with certain previous results due to Bazley and Fox (1966) 
and to Jennings and Wilson (1966, 1967). A much more general lower-bound expression 
is then presented which is often applicable even in cases where matrix elements of F 2  do 
not exist, and which is especially useful for trial wave functions of marginal accuracy. 
The  optimal form of the lower-bound expressions is discussed in terms of operator non- 
linearities, and finally in § 7 an illustrative application is made to various properties of 
the normal helium atom. 
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and AF is the ‘width’ of the operator F i n  the state 14) as defined by 

( A V  = (4IF2I4 > - (41F14)z. 
We shall assume that S is sufficiently near unity as to satisfy the inequality 

S AF 
(1 - S2)liZ (+IFl+}* 

When F is restricted to be apositiae operator, F 2- 0, an application of the Schwarz 
inequality in the form 

leads finally to the desired result 

<#IFI+) <#IFl#>”2 (4lFld >l i2  (2) 

If 14) is interpreted as some approximation to the true wave function !$I), then the right- 
hand side of (3) provides a guaranteed lower bound to the true value of ( # [ F i # )  in terms 
of the overlap S, the width AF and the approximate {$lFl+). 

It is important to notice that the sense of the inequality (3) is held intact if S is replaced 
by any guaranteed lower bound to the true value of the overlap ($ j#) .  Thus S may be 
obtained from the ‘Eckart criterion’ (Eckart 1930, Shull and Lowdin 1958) or some related 
scheme (Weinberger 1960, Weinhold 1967). 

3. Comparison with Bazley-Fox formula 

(1966) have given the following inequality for (#IF]#):  
Under similar assumptions on the non-negativity of the operator F, Bazley and Fox 

In  the region of validity of the bounds, (3) will be superior to (4)  if, and only if, 

S ( 4 I F I 4 )  - (1 - S2)1’2AF 2 (dIF14)  - (2 - 25”’” ( ~ 1 F 2 [ 4 } ” z  
or, putting 8 = 1 - S, if 

(26)’” (41 F 2  14 2 (26 - 62)1’2AF+ 8 ($1 F 14 }. ( 5 )  

Since both sides of ( 5 )  are positive they may be squared without altering the sense of the 
inequality. Thus we must check to see if 

8 (dIF2[ 4 ) + 2( 1 - 8) (41Fl4 ) 2  2 2(28 - 82)1’2AF(+ [ Fl4 } (6) 
where we have removed a common factor 6 # 0. Similarly both sides of (6) may be squared, 
leading then to the requirement 

(2 (4IFId >2 - 8 <+IF2 14 >I2 2- 0 

which of course is satisfied for all values of 8. Thus the formula (3) is uniformly superior 
to the Bazley-Fox formula (4)  throughout the region of validity of the two bounds. 

4. Comparison with Jennings-Wilson formula 

into the form 
If we define D = (+IF[d)-  (#IF;#) and set X = ((1 -S)/2)1’z, then (3) may be put 

D 6 4hAF{1 + X Y . - A ~ ( ~ / ~ ) - X ~ C L + X ~ ( ~ / ~ ) +  ...> (7) 
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where x is the quantity 
<dIFId> - A F  

c(= 

A F  (51Fld >' 
Jennings and Wilson (1966) have recently proposed error limits for expectation values 
which may be written in the form (when D 3 0) 

D G 4XAF (8) 
and which is expected to be valid for sufficiently small X 2 0. Comparison of (8) with (7) 
shows that the Jennings-Wilson result is identical with ( 3 )  as X --f 0. This is actually the 
only valid comparison since in the derivation of (8) higher-order terms (with positive 
coefficients) also appear 

I <dl(F- <dlFld))41d Y2 
(@I2 

D G 4XAF {l +A -+ ... 

and these higher powers of X were finally neglected. 
However, even for larger values of X (when (8) will no longer be strictly valid) the 

bound (3) will actually furnish a better bound than the truncated bound (8) if, as often 
happens, (#I/FI$) exceeds AF. Since, furthermore, the bound (3) involves calculation of 
exactly the same matrix elements as occur in the Jennings-Wilson result, it is concluded 
that (3) provides a more satisfactory lower bound from both the theoretical and the practical 
standpoint. 

Of course, the Jennings-Wilson formula applies to a more general class of operators F 
and provides also an upper bound to the true expectation value, as the present treatment is 
unable to do. It should further be remarked that none of these bounds can treat operators 
such as 8(r),  for which the work of Redei (1963) may be consulted. 

5. Alternative lower bounds 

bounds to expectation values. Let us write (1) again as 
The  formula (3) is only a special case of a much more general expression for lower 

<$lgl4> 2- s<dlgld>-(1-s2)1'2Ag 

<$lgld> = <$lg'gl-"ld) ($lg2ul$>1i2(dIg2-2u1d>1i2 

but in place of (2) we now take the Schwarz inequality (for g 2 0) in the form 

for any value of U. If we set g2u = F or g = F1'2u we then obtain the desired resultt 

which is valid for any values of o for which the quantities are all defined and for which 

Formula ( 3 )  is the special case o = & of the general relation (lo), while for very large U 

{S2/(1 -S2)}1/2 2 AF1'2u/(~lF112uI~). 

we obtain 

which is recognized simply as the Schwarz inequality for the matrix element 
s = ($Id> = ($IF 1 / 2 F - 1 / 2  Id). Another interesting special case of (10) occurs at U = 1, 
where the lower bound becomes 

($IF1 $ ) 2 {S  (dl f Id ) - (1 - s2>1i2Af32 (11) 
? W e  may remark here that (10) also furnishes a set of 'experimental' lower bounds which, 

<~jF"/#)2/<#IF2n-11#) for all however, appear to be very weak. Letting S -j 1 gives (#jFI$) 
(integer or non-integer) n, where the matrix elements are only in terms of $. 



308 F.  Weinhold 

and is expressed entirely in terms of the value and width of the square-root operator 
f = F  Relations such as (11) are especially important in cases where the integral 
(+'F21+) diverges so that the width AF is undefined and the lower-bound formulae (3), 
(4), (8) are all inapplicable. I 

Inspection of the formula (10) shows that only the value U = 4, formula (3), could lead 
to an exact lower bound as S --f 1. It would be desirable to compare (10) with (3) for 
arbitrary values of U, but the appearance of fractional operators makes this difficult except 
in certain special cases, and the direct differentiation of (10) appears unproductive. 

Let us therefore, as a special case, compare the bounds furnished by (3) and (11). Let 
us denote the right-hand side of (3) by B,3) ,  the right-hand side of (11) by and expand 
the difference B,3)-B,11) in powers of h = {(l-,S)/2]1'2. This gives 

where 
B,,, - B,,,, = ( ~ f ) 2  - y4p) + ~ ( 4 ~ )  + ~3(10p) + . . I 

Thus as S -+ 1 the bound furnished by (3) will be superior to that of (11) by an amount 
(Af )2, and it would appear that we should therefore avoid (1 1) altogether in cases where (3) 
is applicable. However, if 1 - S is not sufficiently small and if /3 > 0 (i.e. if Af is very 
small) the bound furnished by (1 1) may actually be superior to that of (3). The formula (1 1) 
should therefore be kept in mind when attempting to find the best possible lower bound 
for a trial wave function of marginal accuracy. 

Indeed, we shall generally wish to examine the formula (10) for all possible values of 
0 so that 0 can be chosen to maximize the lower bound. This possibility will be discussed 
further in 4 7. 

6. Non-linearity of the lower bounds: optimum choice of operators 
Because the lower bounds (3), (10) are distinctly non-linear in the operator F, the 

lower bound to a linear combination of operators will not be identical with the same linear 
combination of lower bounds to the individual operators. For example, it is certainly true 
that arbitrary one-particle operators yl, y2 will satisfy 

'i ( $ I ~ l + 4 0  = ($144) = ($140 
but in general it is not true that the lower bound to ($ lr l j$)  is half the lower bound to 
($[y1+y2j$). We shall therefore wish to explore various combinations of y1 and y2 in 
order to obtain the best possible bound for ($lrllt,h). 

For simplicity we consider a set of single-particle operators Y, (i = 1, 2, ..., N )  and 
define 

R = 2 aiYi 
i 

where the scalars ai are restricted to satisfy 
C a i =  1. 
i 

Then (R) = (yl) for every choice of the ai, and from the formula (3) it is apparent that 
we wish to choose the a, in such a way as to minimize (AR)2:  

= - (yl )2 + ( r12  ) 2 ai2 + (y1y2 ) 2 a,( 1 -a t ) .  
t i 

Adopting the Lagrange multiplier - K for the constraint (12), we require 

which shows that ai is simply a constant for all i. Thus to obtain the optimum lower 
bound to a one-particle operator y1 one should find the lower bound to the symmetric sum 
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operator R defined by 
R = N - I  2 ~i 

I 

and a similar conclusion holds also for 2, 3, ...-p article operators. 

Jennings-Wilson formulae discussed previously. 

7. Application to expectation values in normal helium atom 
Because of the circumstances described in 5 4 the bound furnished by (3) will not differ 

significantly from the Jennings-Wilson result (8) when wave functions of very high accuracy 
are used. The  reader should therefore consult their papers (Jennings and Wilson 1966, 
1967) for many examples of the accuracy which is available in the most favourable cases 
from the formulae (3), (8). 

For illustrative purposes we have instead considered the calculation of expectation 
values for the ground-state helium atom using the simple screened hydrogenic wave func- 
tion (Pauling and Wilson 1935, p. 184) 

Of course the same modification will also improve the quality of the Bazley-Fox and 

c3 + = -  exp(-cr,-crz), c = 27/16. 

The calculated energy (+]HI+) = -2.848 A.U. (cf. E,,, = -2,9037 A.u.) leads by the 
Eckart criterion to a value S = 0.9623 for the lower bound to the true overlap integral 
(+I$). However, following Jennings and Wilson (1967) we may use a three-term Hylleraas 
wave function together with the method of Weinhold (1967) to obtain an improved lower 
bound of S = 0,9870, which latter value has also been used in the computations. 

,IT 

Table 1. Lower bounds to expectation values of various properties in the 
normal helium atom as calculated by formula (3) and the Jennings-Wilson 

bound, formula (8) 

AF 

0.912 

0.363 

1.193 

-3 

2,193 

0.653 

0.887 

-d 

(45/Fl+) 

1.054 

0.889 

1.688 

5.695 

2.107 

1.296 

1 .OS5 

1.898 

Lower bounds to true 
True expectation value 

<#IFI#Y (*lFl*) 
Jennings and Wilson 

Equation (3) equation (8) 

0.757 0.759 (0,637)" 
0.556 0.552 (0.345)" 
0,755 0.772 (0.723)" 

0'9295 0.644 0.690 (0.607)" 
1.287 1.303 (1 *143)" 

143383 1.000 1.032 (0.761)" 
6.0174 -6 

-6 -6 

1.416 1.400 
2*5164 0.972 0.903 

1 e064 1.086 
1'4221 0.883 0.938 

0.765 0,769 
0'9458 0.568 0,568 

For each operator the upper entry gives the result for the improved overlap 
S = 0.9870, the lower for the Eckart overlap S = 0,9623. 

a, all numbers are in A.u.;  b, Pekeris 1959; c, lower bound calculated directly 
for the one-electron operator rather than the 'symmetric sum' operator described 
in 3 6 ;  d, integrals of F2 diverge. 
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I n  table 1 are exhibited the expectation values of various powers of the nuclear- 
electronic and interelectronic distances yl, y12 in the normal helium atom, the true values 
being taken from the very accurate calculations of Pekeris (1959). The  final two columns 
give respectively the lower bounds furnished by formula (3) and the Jennings-Wilson 
bound (8). I n  both of the lower bounds to powers of y1 we have used the symmetric sum 
operator described in 9 6, but for the Jennings-Wilson bound we have also included in 
parentheses the number which would be directly calculated as the lower bound to the 
one-electron operator. 

It is observed that the bound (3) is still entirely comparable in quality with the Jennings- 
Wilson lower bound (8), even though the latter would perhaps be of questionable validity 
for the given value of S. I n  fact in several cases the bound (3) is actually superior with the 
Jennings-Wilson result, though this could not have been anticipated. 

We can improve the lower bounds given in table 1 by adopting a variational principle 
for expectation values along two distinct lines (which might also be combined). 

The  lower bound furnished by (3), or the more general formula (lo), can be optimized 
by suitably choosing the values for any adjustable parameters which the trial function (b 
may contain. This possibility was explored by Jennings and Wilson (1967) for their own 
error limit expression (8). They found that the optimum error limit function is always 
very close to the optimum energy function, because the error bound depends very strongly 
on S and thus, through the Eckart criterion, on (dlHl$).  The situation is illustrated in 
figure 1, which shows how the lower bounds furnished by (3) and (11) for the inverse 

Figure 1. Variation of the lower bound to < # I Y ~ ~ - ~ / # )  with respect to the screening 
parameter c in the screened hydrogenic approximation. The upper full curve is from 
formula (ll), while the lower is from formula (3), both calculated using the Eckart 
criterion for overlap S. The broken line (see right scale) shows the corresponding energy 

expectation value, with the optimum marked at c = 27/16. 

interelectronic distance r I2 - l  vary with the screening parameter c in the screened hydrogenic 
approximation. It is apparent that the improvement in the lower bound is rather small 
for the extra computational effort involved. 

But, as indicated in 4 5 ,  we can formulate an alternative ‘variational principle’ on the 
basis of the relation (10) by considering the lower bound FLB(u)  

as a function of U ,  This has been carried out for the screened hydrogenic 4 at the optimum 
energy screening parameter c = 27/16. The  qualitative form of the FLB(u)  against U curves 
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is indicated in figure 2, while figures 3 and 4 show portions of the actual curves for the 
operators rln, rlZn respectively, using both the Eckart and improved values of the overlap S. 
The final optimized lower bounds and corresponding optimum a are given in table 2. 

( U )  

U 

Figure 2 .  Qualitative plot of FLB(u) against cr for the operators F considered in the 
text, The  shaded region indicates a range of cr for which FLB(u) is undefined or invalid. 
For (allowed) negative values of CJ the lower bound rises slowly from zero to the 
horizontal asymptote at F L B (  CO) = S2/<$/F-lj$ >, while for (allowed) positive values 
of cr the bound rises steeply from zero to some maximum at a* before falling back to 

the asymptote. 

2.31- 

, R; 
0 1.0 2.0 

U 

Figure 3. Lower bounds F L B ( c J )  from formula (10) as a function of cr for F = various 
powers of the nuclear-electronic distance ~ 1 .  For each operator, the upper curve 

corresponds to S = 0.9870, the lower to S = 0.9623. 

The U optimizations here improve the lower bound (3) by as much as 20-30%, which 
is certainly of significant value, but it is clear from figures 3 and 4 that the improvements 
secured by the U optimizations are still rather small compared with the changes which 
result when the overlap S is improved. I n  general the maximum of the FLB(u) against U 

curve is observed to ( a )  become more peaked, and (6)  shift to lower values of U (cIoser to 
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U = 9) as the overlap S is improved, in accordance with the observation that only U = -$, 
formula (3), can give an exact lower bound as S +- 1. 

Although the lower bounds are, as expected, fairly loose for the simple screened 
hydrogenic wave function, it is useful to recall that the Temple (1928) energy lower bound 

L I ‘ I  I I 
0 1.0 2.0 

U 

Figure 4. Lower bounds FLB(u) from formula (10) as a function of U for F = various 
powers of the interelectronic distance rI2. For each operator, the upper curve corres- 

ponds to S = 0.9870, the lower to S = 0.9623. 

Table 2. Optimized lower bounds from formula (10) as a function of Q using 
the screened hydrogenic wave function 4 

F Optimum lower Optimum 0 yo improvement 
bound FLB(u) over formula (3) 

0.785 0.61 3.7 
0.623 0.69 12.0 
0.767 0.64 1.6 
0.677 0.80 5.1 
1.370 0-69 6 *4 
1.190 0.90 19.0 
2.273 0.86 - 
1.688 1 .oo 

rl- 

r1 

r l - l  

Y1-2 - 

1 .501 0.66 
1.171 0.80 
1 -096 0.75 
0.967 1.07 
0.845 0.83 
0.743 1.38 
0.813 0.93 
0.616 1.18 

Y1Z2 

Y12 

Y12 -I 

y12-2 

6.0 
20.6 

3.0 
9.5 

10.5 
30.8 

For each operator the upper entry gives the result for the improved 
overlap S = 0.9870, the lower for the Eckart overlap S = 0.9623. 

of - 4.09 A.U. for this same screened hydrogenic function is in error by more than 40 yo. 
It is also interesting to notice that the best calculated lower bound to ( # i r 1 2 - ’ \ # )  is actually 
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somewhat closer to the true value than is the expectation value (+lr12-1[+) which one 
would calculate directly from the trial function itself. 
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